
VA/PT REPORT
VULNERABILITY ASSESSMENT & PENETRATION TEST

PREPARED FOR:

Client Organization / TESTPHP.VULNWEB.COM

Target Scope: http://testphp.vulnweb.com/

PREPARED BY:

Cyber Advisory LLC

ExploitFinder Security Team

DOCUMENT ID: 489a6845-cf22-47c5-bdc5-42a84023cbf4

DATE: 2026-02-07 17:56:32

STRICTLY CONFIDENTIAL

This document contains confidential information regarding the security posture of the target system. Distribution is restricted to authorized personnel
only.

Cyber Advisory LLC | www.exploitfinder.com Page 1

Strictly Confidential - Cyber Advisory LLC Exploit Finder

1. DISCLAIMER & CONFIDENTIALITY

This report is the exclusive property of the Client and Cyber Advisory LLC. The content of this document is

strictly confidential and intended solely for the use of the individual or entity to whom it is addressed.

LIMITATION OF LIABILITY:

This assessment was performed using industry-standard methodologies (NIST, OWASP, OSSTMM) and the

advanced ExploitFinder engine. While every effort has been made to ensure accuracy, the security

landscape is continuously evolving. This report represents a snapshot of the security posture at the time of

testing. Cyber Advisory LLC cannot guarantee that all vulnerabilities have been identified, nor can it

guarantee immunity from future attacks.

Cyber Advisory LLC shall not be held liable for any damages, direct or indirect, arising from the use or misuse

of the information contained within this report.

2. DOCUMENT CONTROL

Role Name Status Date

Lead Auditor ExploitFinder Engine Completed 07/02/2026

QA Reviewer Cyber Advisory Team Approved 07/02/2026

Report ID 489a6845-cf22-47c5-bdc5-42a84023cbf4 Version 1.0

Cyber Advisory LLC | www.exploitfinder.com Page 2

Strictly Confidential - Cyber Advisory LLC Exploit Finder

3. EXECUTIVE SUMMARY

Cyber Advisory LLC was commissioned to perform a Vulnerability Assessment and Penetration Test (VA/PT)

against the infrastructure of TESTPHP.VULNWEB.COM.

The objective of this engagement was to identify security weaknesses, misconfigurations, and vulnerabilities

that could be exploited by malicious actors to compromise the Confidentiality, Integrity, and Availability of the

organization's assets.

Methodology Scenario:

The assessment was conducted effectively in a Black-Box Scenario. In this mode, the security team has zero

prior knowledge of the target infrastructure, simulating a real-world external attack from the internet. This

approach provides the most realistic view of the risk exposure to external threats.

Overall Risk Rating: CRITICAL

Critical vulnerabilities were identified with severe business impact potential. Immediate containment,

emergency patching, and executive escalation are required.

Executive Risk Conclusion: CRITICAL exposure. Immediate containment and emergency remediation

are required before standard business operations continue.

Summary of Results
- Executive Risk Conclusion: CRITICAL exposure. Immediate containment and emergency remediation are required
before standard business operations continue.
- Report ID: 489a6845-cf22-47c5-bdc5-42a84023cbf4
- Assessment date: 2026-02-07 17:56:32
- Assets analyzed: 1 IP(s), 32 subdomain(s)
- Total findings: 64 (Critical 2, High 32, Medium 6, Low 18, Info 6)

Top Finding Families

- Absence of Anti-CSRF Tokens
- Config
- Content Security Policy (CSP) Header Not Set
- Critical
- Cross Site Scripting (Reflected)
- Email Security
- GDPR Contact Missing
- GDPR Cookie Consent Missing

Cyber Advisory LLC | www.exploitfinder.com Page 3

Strictly Confidential - Cyber Advisory LLC Exploit Finder

4. SCOPE & TECHNICAL METRICS

The following metrics summarize the depth of the assessment:

 Metric Count

 IP Addresses Analyzed 1

 Subdomains Enumerated 32

 Vulnerabilities Identified 64

Penetration Test Scope Coverage
Penetration testing activities were executed across the authorized external attack surface: 2 reachable web assets out of
33 discovered hostnames, 0 hosts with open services, 0 validated open port-service entries, and 0 resolved public IP
target(s). All in-scope subdomains, IP targets, and discovered services were fingerprinted and analyzed for exploitable
weaknesses.

Network Surface Summary

Metric Count

Discovered Hostnames 33

Reachable Assets (HTTP response observed) 2

Redirect Responses (3xx) 0

Access-Controlled / Blocked (401/403/429) 0

Dead / Unresolved 32

Network Surface Inventory (All Discovered Subdomains)

Host HTTP Status

a105.testphp.vulnweb.com dead

a196.testphp.vulnweb.com dead

aomenhefabocaiwang.testphp.vulnweb.com dead

baomahuiyulechengqipai.testphp.vulnweb.com dead

bet365dabukailiao.testphp.vulnweb.com dead

biboyulekaihu.testphp.vulnweb.com dead

dalianxinyuwangqipai.testphp.vulnweb.com dead

dubogongsi.testphp.vulnweb.com dead

ens1.testphp.vulnweb.com dead

hnd.testphp.vulnweb.com dead

Cyber Advisory LLC | www.exploitfinder.com Page 4

Strictly Confidential - Cyber Advisory LLC Exploit Finder

4.N NETWORK SURFACE INVENTORY (CONTINUED)

Host HTTP Status

host-158.testphp.vulnweb.com dead

jinpaiyulechengaomenduchang.testphp.vulnweb.com dead

l33.testphp.vulnweb.com dead

lilaizhenrenyulecheng.testphp.vulnweb.com dead

liubowenxinshuizhuluntan.testphp.vulnweb.com dead

liupanshui.testphp.vulnweb.com dead

n155.testphp.vulnweb.com dead

nico.testphp.vulnweb.com dead

ouzhoubeizhibo.testphp.vulnweb.com dead

phpadmin.testphp.vulnweb.com dead

quaomenxianshangyulecheng.testphp.vulnweb.com dead

qx7.testphp.vulnweb.com dead

s112.testphp.vulnweb.com dead

shalongguojibaijialeyulecheng.testphp.vulnweb.com dead

sieb-web1.testphp.vulnweb.com dead

srv240.testphp.vulnweb.com dead

taianlanqiuwang.testphp.vulnweb.com dead

testphp.vulnweb.com 200

vpn0010.testphp.vulnweb.com dead

www.testphp.vulnweb.com dead

xunyinglanqiubifenzhibo.testphp.vulnweb.com dead

yulexinxiwangbocai.testphp.vulnweb.com dead

zhenrenyulekaihu.testphp.vulnweb.com dead

Risk Distribution Graph

CRITICAL 2

HIGH 32

MEDIUM 6

LOW 18

INFO 6

Cyber Advisory LLC | www.exploitfinder.com Page 5

Strictly Confidential - Cyber Advisory LLC Exploit Finder

5. METHODOLOGY, TEST TYPES & ATTACK COVERAGE

Assessment Timeline & Toolchain
Observed telemetry: 691 HTTP requests, 30 mapped points, 32 subdomains, and 64 findings.

1. Asset Discovery
Subdomains, directories, and JavaScript asset analysis.
- Subfinder [Executed]: Fast passive subdomain enumeration.
- Directory Fuzzing (FFUF) [Configured]: High-performance directory/file brute-forcing.
- Deep JS Analysis [Executed]: JavaScript inspection for exposed endpoints, secrets, and client-side attack surface.
- Recursive Subdomain Scan [Executed]: Discovered subdomains are included in deeper vulnerability analysis.

2. Service & Fingerprint Analysis
Service exposure mapping and vulnerable component intelligence.
- Service Enumeration [Configured]: Open service and version discovery for externally reachable hosts.
- Technology Fingerprinting [Executed]: Software/version inference with vulnerable component correlation.
- Exploit Feasibility Review [Executed]: Evidence-based validation of likely exploit paths and impact.

3. Crawling & Attack Surface Mapping
State-aware and legacy crawling for endpoint coverage.
- Surgical State-Graph Crawler [Executed]: Maps forms, flows, and interactive states for dynamic applications.
- Deep JS Scanner (SPA) [Executed]: Headless execution for DOM attack vectors and hidden endpoints.
- Classic Legacy Spider [Executed]: Traditional href crawling used as compatibility fallback.

4. DAST & Active Verification
Automated dynamic analysis for web-layer security controls.
- OWASP ZAP (Daemon) [Executed]: Advanced DAST integration (v2.17.0). Daemon settings, API key, and port
orchestration are managed by Scan Manager.
- Nuclei Engine [Available]: Template-driven detection of known exposures and misconfigurations.

5. Active Injection Modules
Targeted exploit simulation and payload validation.
- SQLMap [Executed]: SQL Injection detection and verification.
- XSStrike [Executed]: Context-aware XSS fuzzing and payload validation.
- Commix [Available]: Command Injection detection for server-side execution vectors.

6. Risk Scoring & Reporting
Consolidation of findings, risk rating, and remediation roadmap.
- Passive Compliance Analysis [Executed]: GDPR/NIST-oriented passive checks and header posture analysis.
- Executive Risk Conclusion [Completed]: Executive risk statement with technical evidence and priority actions.

Assessment Methodology
The evaluation process follows recognized VA/PT practices aligned to NIST SP 800-115, OSSTMM and OWASP
guidance. Activities include reconnaissance, fingerprinting, misconfiguration review, vulnerability validation and
remediation guidance.

- Black-Box: external perspective without privileged internals.
- Grey-Box: targeted checks with limited context when scope data is provided.
- White-Box: code/configuration review methodology available for explicitly authorized engagements.
- All intrusive checks are executed under controlled conditions and written authorization.

Cyber Advisory LLC | www.exploitfinder.com Page 6

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Attack Vectors Executed
- SQL Injection
- SQL Injection (Boolean)
- SQL Injection (Blind)
- SQL Injection (Out of Band)
- Cross-Site Scripting (Reflected/Stored)
- Cross-Site Scripting (Blind)
- Command Injection
- Command Injection (Blind)
- Local File Inclusion
- Remote File Inclusion
- Remote File Inclusion (Out of Band)
- Code Evaluation
- Code Evaluation (Out of Band)
- Server-Side Template Injection
- HTTP Header Injection
- Open Redirection
- Expression Language Injection
- XML External Entity
- XML External Entity (Out of Band)
- Server-Side Request Forgery (Pattern Based)
- Server-Side Request Forgery (DNS)
- File Upload Security Validation
- Reflected File Download
- Insecure Reflected Content
- Web App Fingerprinting
- HTTP Methods Misconfiguration
- Cross-Origin Resource Sharing (CORS) Misconfiguration
- WebDAV Exposure
- Windows Short Filename Enumeration
- RoR Code Execution Checks

Detected in this assessment
- Absence of Anti-CSRF Tokens
- Config
- Content Security Policy (CSP) Header Not Set
- Critical
- Cross Site Scripting (Reflected)
- Email Security
- GDPR Contact Missing
- GDPR Cookie Consent Missing
- Missing Anti-clickjacking Header
- SQL Injection - MySQL
- Security
- Security Headers Missing

Cyber Advisory LLC | www.exploitfinder.com Page 7

Strictly Confidential - Cyber Advisory LLC Exploit Finder

5.C METHODOLOGY REFERENCES

References Methodologies and Techniques Used
NIST SP 800-115
https://csrc.nist.gov/pubs/sp/800/115/final

OSSTMM 3
https://www.isecom.org/OSSTMM.3.pdf

OWASP Web Security Testing Guide (WSTG)
https://owasp.org/www-project-web-security-testing-guide/

OWASP Testing Guide v4
https://owasp.org/www-pdf-archive/OWASP_Testing_Guide_v4.pdf

PTES
http://www.pentest-standard.org/index.php/Main_Page

OWASP Top 10
https://owasp.org/www-project-top-ten/

Cyber Advisory LLC | www.exploitfinder.com Page 8

Strictly Confidential - Cyber Advisory LLC Exploit Finder

6. DETAILED TECHNICAL FINDINGS

 1. PHP 5.6.40 Obsoleto CRITICAL

Description: PHP legacy estremamente vulnerabile.

Validation: Observed. Evidence gathered through controlled testing workflow.

Risk Score: 9.5

CVSS: Risk score inferred from severity: Critical (9.5)

Location: http://testphp.vulnweb.com/

Proof of Concept / Evidence:

Detected during Passive Audit

Recommendation:

Verificare la configurazione secondo le best practices di sicurezza.

 2. PHP 5.6.40 Obsoleto CRITICAL

Description: PHP legacy estremamente vulnerabile.

Validation: Observed. Evidence gathered through controlled testing workflow.

Risk Score: 9.5

CVSS: Risk score inferred from severity: Critical (9.5)

Location: http://testphp.vulnweb.com/

Proof of Concept / Evidence:

Detected during Passive Audit

Recommendation:

Verificare la configurazione secondo le best practices di sicurezza.

Cyber Advisory LLC | www.exploitfinder.com Page 9

Strictly Confidential - Cyber Advisory LLC Exploit Finder

 3. SQL Injection - MySQL HIGH

Description: SQL injection may be possible.

Validation: Medium. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/search.php?test=query

Proof of Concept / Evidence:

You have an error in your SQL syntax

Recommendation:

Do not trust client side input, even if there is client side validation in place.
In general, type check all data on the server side.
If the application uses JDBC, use PreparedStatement or CallableStatement, with parameters passed by '?'
If the application uses ASP, use ADO Command Objects with strong type checking and parameterized queries.
If database Stored Procedures can be used, use them.
Do *not* concatenate strings into queries in the stored procedure, or use 'exec', 'exec immediate', or equivalent
functionality!
Do not create dynamic SQL queries using simple string concatenation.
Escape all data received from the client.
Apply an 'allow list' of allowed characters, or a 'deny list' of disallowed characters in user input.
Apply the principle of least privilege by using the least privileged database user possible.
In particular, avoid using the 'sa' or 'db-owner' database users. This does not eliminate SQL injection, but minimizes its
impact.
Grant the minimum database access that is necessary for the application.

 4. SQL Injection - MySQL HIGH

Description: SQL injection may be possible.

Validation: Medium. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/search.php?test=query

Proof of Concept / Evidence:

You have an error in your SQL syntax

Recommendation:

Do not trust client side input, even if there is client side validation in place.
In general, type check all data on the server side.
If the application uses JDBC, use PreparedStatement or CallableStatement, with parameters passed by '?'
If the application uses ASP, use ADO Command Objects with strong type checking and parameterized queries.
If database Stored Procedures can be used, use them.
Do *not* concatenate strings into queries in the stored procedure, or use 'exec', 'exec immediate', or equivalent

Cyber Advisory LLC | www.exploitfinder.com Page 10

Strictly Confidential - Cyber Advisory LLC Exploit Finder

functionality!
Do not create dynamic SQL queries using simple string concatenation.
Escape all data received from the client.
Apply an 'allow list' of allowed characters, or a 'deny list' of disallowed characters in user input.
Apply the principle of least privilege by using the least privileged database user possible.
In particular, avoid using the 'sa' or 'db-owner' database users. This does not eliminate SQL injection, but minimizes its
impact.
Grant the minimum database access that is necessary for the application.

 5. SQL Injection - MySQL HIGH

Description: SQL injection may be possible.

Validation: Medium. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/search.php?test=%27

Proof of Concept / Evidence:

You have an error in your SQL syntax

Recommendation:

Do not trust client side input, even if there is client side validation in place.
In general, type check all data on the server side.
If the application uses JDBC, use PreparedStatement or CallableStatement, with parameters passed by '?'
If the application uses ASP, use ADO Command Objects with strong type checking and parameterized queries.
If database Stored Procedures can be used, use them.
Do *not* concatenate strings into queries in the stored procedure, or use 'exec', 'exec immediate', or equivalent
functionality!
Do not create dynamic SQL queries using simple string concatenation.
Escape all data received from the client.
Apply an 'allow list' of allowed characters, or a 'deny list' of disallowed characters in user input.
Apply the principle of least privilege by using the least privileged database user possible.
In particular, avoid using the 'sa' or 'db-owner' database users. This does not eliminate SQL injection, but minimizes its
impact.
Grant the minimum database access that is necessary for the application.

Cyber Advisory LLC | www.exploitfinder.com Page 11

Strictly Confidential - Cyber Advisory LLC Exploit Finder

 6. SQL Injection - MySQL HIGH

Description: SQL injection may be possible.

Validation: Medium. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/search.php?test=%27

Proof of Concept / Evidence:

You have an error in your SQL syntax

Recommendation:

Do not trust client side input, even if there is client side validation in place.
In general, type check all data on the server side.
If the application uses JDBC, use PreparedStatement or CallableStatement, with parameters passed by '?'
If the application uses ASP, use ADO Command Objects with strong type checking and parameterized queries.
If database Stored Procedures can be used, use them.
Do *not* concatenate strings into queries in the stored procedure, or use 'exec', 'exec immediate', or equivalent
functionality!
Do not create dynamic SQL queries using simple string concatenation.
Escape all data received from the client.
Apply an 'allow list' of allowed characters, or a 'deny list' of disallowed characters in user input.
Apply the principle of least privilege by using the least privileged database user possible.
In particular, avoid using the 'sa' or 'db-owner' database users. This does not eliminate SQL injection, but minimizes its
impact.
Grant the minimum database access that is necessary for the application.

 7. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

Cyber Advisory LLC | www.exploitfinder.com Page 12

Strictly Confidential - Cyber Advisory LLC Exploit Finder

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Low. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/showimage.php?file=%3CscrIpt%3Ealert%281%29%3B%3C%2FscRipt

%3E&size=160

Proof of Concept / Evidence:

<scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These

Cyber Advisory LLC | www.exploitfinder.com Page 13

Strictly Confidential - Cyber Advisory LLC Exploit Finder

mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 8. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

Cyber Advisory LLC | www.exploitfinder.com Page 14

Strictly Confidential - Cyber Advisory LLC Exploit Finder

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Low. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/showimage.php?file=%3CscrIpt%3Ealert%281%29%3B%3C%2FscRipt

%3E&size=160

Proof of Concept / Evidence:

<scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

Cyber Advisory LLC | www.exploitfinder.com Page 15

Strictly Confidential - Cyber Advisory LLC Exploit Finder

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 9. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

instances which load content from the file system may execute code under the local machine zone

Cyber Advisory LLC | www.exploitfinder.com Page 16

Strictly Confidential - Cyber Advisory LLC Exploit Finder

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Low. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/showimage.php?file=%3CscrIpt%3Ealert%281%29%3B%3C%2FscRipt

%3E

Proof of Concept / Evidence:

<scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

Cyber Advisory LLC | www.exploitfinder.com Page 17

Strictly Confidential - Cyber Advisory LLC Exploit Finder

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 10. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

Cyber Advisory LLC | www.exploitfinder.com Page 18

Strictly Confidential - Cyber Advisory LLC Exploit Finder

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Low. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/showimage.php?file=%3CscrIpt%3Ealert%281%29%3B%3C%2FscRipt

%3E

Proof of Concept / Evidence:

<scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would

Cyber Advisory LLC | www.exploitfinder.com Page 19

Strictly Confidential - Cyber Advisory LLC Exploit Finder

be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 11. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

Cyber Advisory LLC | www.exploitfinder.com Page 20

Strictly Confidential - Cyber Advisory LLC Exploit Finder

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/product.php?pic=%3CscrIpt%3Ealert%281%29%3B%3C%2FscRipt%3E

Proof of Concept / Evidence:

<scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

Cyber Advisory LLC | www.exploitfinder.com Page 21

Strictly Confidential - Cyber Advisory LLC Exploit Finder

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 12. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

Cyber Advisory LLC | www.exploitfinder.com Page 22

Strictly Confidential - Cyber Advisory LLC Exploit Finder

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/product.php?pic=%3CscrIpt%3Ealert%281%29%3B%3C%2FscRipt%3E

Proof of Concept / Evidence:

<scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

Cyber Advisory LLC | www.exploitfinder.com Page 23

Strictly Confidential - Cyber Advisory LLC Exploit Finder

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 13. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

Cyber Advisory LLC | www.exploitfinder.com Page 24

Strictly Confidential - Cyber Advisory LLC Exploit Finder

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/listproducts.php?cat=%3CscrIpt%3Ealert%281%29%3B%3C%2FscRi

pt%3E

Proof of Concept / Evidence:

<scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would

Cyber Advisory LLC | www.exploitfinder.com Page 25

Strictly Confidential - Cyber Advisory LLC Exploit Finder

be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 14. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

Cyber Advisory LLC | www.exploitfinder.com Page 26

Strictly Confidential - Cyber Advisory LLC Exploit Finder

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/listproducts.php?cat=%3CscrIpt%3Ealert%281%29%3B%3C%2FscRi

pt%3E

Proof of Concept / Evidence:

<scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would

Cyber Advisory LLC | www.exploitfinder.com Page 27

Strictly Confidential - Cyber Advisory LLC Exploit Finder

be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 15. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

Cyber Advisory LLC | www.exploitfinder.com Page 28

Strictly Confidential - Cyber Advisory LLC Exploit Finder

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/listproducts.php?artist=%3CscrIpt%3Ealert%281%29%3B%3C%2Fs

cRipt%3E

Proof of Concept / Evidence:

<scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would

Cyber Advisory LLC | www.exploitfinder.com Page 29

Strictly Confidential - Cyber Advisory LLC Exploit Finder

be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 16. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

Cyber Advisory LLC | www.exploitfinder.com Page 30

Strictly Confidential - Cyber Advisory LLC Exploit Finder

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/listproducts.php?artist=%3CscrIpt%3Ealert%281%29%3B%3C%2Fs

cRipt%3E

Proof of Concept / Evidence:

<scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would

Cyber Advisory LLC | www.exploitfinder.com Page 31

Strictly Confidential - Cyber Advisory LLC Exploit Finder

be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 17. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

Cyber Advisory LLC | www.exploitfinder.com Page 32

Strictly Confidential - Cyber Advisory LLC Exploit Finder

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/artists.php?artist=%3CscrIpt%3Ealert%281%29%3B%3C%2FscRipt

%3E

Proof of Concept / Evidence:

<scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would

Cyber Advisory LLC | www.exploitfinder.com Page 33

Strictly Confidential - Cyber Advisory LLC Exploit Finder

be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 18. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

Cyber Advisory LLC | www.exploitfinder.com Page 34

Strictly Confidential - Cyber Advisory LLC Exploit Finder

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/artists.php?artist=%3CscrIpt%3Ealert%281%29%3B%3C%2FscRipt

%3E

Proof of Concept / Evidence:

<scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would

Cyber Advisory LLC | www.exploitfinder.com Page 35

Strictly Confidential - Cyber Advisory LLC Exploit Finder

be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 19. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

Cyber Advisory LLC | www.exploitfinder.com Page 36

Strictly Confidential - Cyber Advisory LLC Exploit Finder

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/secured/newuser.php

Proof of Concept / Evidence:

<scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

Cyber Advisory LLC | www.exploitfinder.com Page 37

Strictly Confidential - Cyber Advisory LLC Exploit Finder

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 20. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

Cyber Advisory LLC | www.exploitfinder.com Page 38

Strictly Confidential - Cyber Advisory LLC Exploit Finder

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/secured/newuser.php

Proof of Concept / Evidence:

<scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

Cyber Advisory LLC | www.exploitfinder.com Page 39

Strictly Confidential - Cyber Advisory LLC Exploit Finder

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 21. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

Cyber Advisory LLC | www.exploitfinder.com Page 40

Strictly Confidential - Cyber Advisory LLC Exploit Finder

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/search.php?test=query

Proof of Concept / Evidence:

</h2><scrIpt>alert(1);</scRipt><h2>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

Cyber Advisory LLC | www.exploitfinder.com Page 41

Strictly Confidential - Cyber Advisory LLC Exploit Finder

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 22. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

Cyber Advisory LLC | www.exploitfinder.com Page 42

Strictly Confidential - Cyber Advisory LLC Exploit Finder

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/search.php?test=query

Proof of Concept / Evidence:

</h2><scrIpt>alert(1);</scRipt><h2>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

Cyber Advisory LLC | www.exploitfinder.com Page 43

Strictly Confidential - Cyber Advisory LLC Exploit Finder

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 23. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

Cyber Advisory LLC | www.exploitfinder.com Page 44

Strictly Confidential - Cyber Advisory LLC Exploit Finder

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/search.php?test=%27%22%3CscrIpt%3Ealert%281%29%3B%3C%2FscR

ipt%3E

Proof of Concept / Evidence:

'"<scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would

Cyber Advisory LLC | www.exploitfinder.com Page 45

Strictly Confidential - Cyber Advisory LLC Exploit Finder

be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 24. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

Cyber Advisory LLC | www.exploitfinder.com Page 46

Strictly Confidential - Cyber Advisory LLC Exploit Finder

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/search.php?test=%27%22%3CscrIpt%3Ealert%281%29%3B%3C%2FscR

ipt%3E

Proof of Concept / Evidence:

'"<scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would

Cyber Advisory LLC | www.exploitfinder.com Page 47

Strictly Confidential - Cyber Advisory LLC Exploit Finder

be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 25. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

Cyber Advisory LLC | www.exploitfinder.com Page 48

Strictly Confidential - Cyber Advisory LLC Exploit Finder

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/guestbook.php

Proof of Concept / Evidence:

<scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

Cyber Advisory LLC | www.exploitfinder.com Page 49

Strictly Confidential - Cyber Advisory LLC Exploit Finder

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 26. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

Cyber Advisory LLC | www.exploitfinder.com Page 50

Strictly Confidential - Cyber Advisory LLC Exploit Finder

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/guestbook.php

Proof of Concept / Evidence:

<scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

Cyber Advisory LLC | www.exploitfinder.com Page 51

Strictly Confidential - Cyber Advisory LLC Exploit Finder

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 27. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

Cyber Advisory LLC | www.exploitfinder.com Page 52

Strictly Confidential - Cyber Advisory LLC Exploit Finder

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/hpp/?pp=%22%3E%3CscrIpt%3Ealert%281%29%3B%3C%2FscRipt%3E

Proof of Concept / Evidence:

"><scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

Cyber Advisory LLC | www.exploitfinder.com Page 53

Strictly Confidential - Cyber Advisory LLC Exploit Finder

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 28. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

Cyber Advisory LLC | www.exploitfinder.com Page 54

Strictly Confidential - Cyber Advisory LLC Exploit Finder

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/hpp/?pp=%22%3E%3CscrIpt%3Ealert%281%29%3B%3C%2FscRipt%3E

Proof of Concept / Evidence:

"><scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

Cyber Advisory LLC | www.exploitfinder.com Page 55

Strictly Confidential - Cyber Advisory LLC Exploit Finder

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 29. File Sensibile Esposto (.idea/workspace.xml) HIGH

Description: Accessibile a: http://testphp.vulnweb.com/.idea/workspace.xml

Validation: Observed. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/

Proof of Concept / Evidence:

Detected during Passive Audit

Recommendation:

Verificare la configurazione secondo le best practices di sicurezza.

Cyber Advisory LLC | www.exploitfinder.com Page 56

Strictly Confidential - Cyber Advisory LLC Exploit Finder

 30. File Sensibile Esposto (.idea/workspace.xml) HIGH

Description: Accessibile a: http://testphp.vulnweb.com/.idea/workspace.xml

Validation: Observed. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/

Proof of Concept / Evidence:

Detected during Passive Audit

Recommendation:

Verificare la configurazione secondo le best practices di sicurezza.

 31. [OpenDB Match] PHP 7.x EOL Critical Risks: Framework: PHP/5.6.40-38+ubuntu20.04.1+deb.sury.org+1HIGH

Description: Status: Rilevamento confermato (Offline DB)

Descrizione: PHP 7.4 è End-of-Life. Esposto a RCE (CVE-2022-31629) e Memory Corruption.

CVE: CVSS 9.8

Fonte: OpenDB Exploit Database (Cached)

Validation: Observed. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/

Proof of Concept / Evidence:

Detected during Passive Audit

Recommendation:

Verificare la configurazione secondo le best practices di sicurezza.

 32. [OpenDB Match] PHP 7.x EOL Critical Risks: Framework: PHP/5.6.40-38+ubuntu20.04.1+deb.sury.org+1HIGH

Description: Status: Rilevamento confermato (Offline DB)

Descrizione: PHP 7.4 è End-of-Life. Esposto a RCE (CVE-2022-31629) e Memory Corruption.

CVE: CVSS 9.8

Fonte: OpenDB Exploit Database (Cached)

Validation: Observed. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Cyber Advisory LLC | www.exploitfinder.com Page 57

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Location: http://testphp.vulnweb.com/

Proof of Concept / Evidence:

Detected during Passive Audit

Recommendation:

Verificare la configurazione secondo le best practices di sicurezza.

 33. No HTTPS/SSL Error HIGH

Description: Connessione non sicura

Validation: Observed. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/

Proof of Concept / Evidence:

Detected during Passive Audit

Recommendation:

Verificare la configurazione secondo le best practices di sicurezza.

 34. No HTTPS/SSL Error HIGH

Description: Connessione non sicura

Validation: Observed. Evidence gathered through controlled testing workflow.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Location: http://testphp.vulnweb.com/

Proof of Concept / Evidence:

Detected during Passive Audit

Recommendation:

Verificare la configurazione secondo le best practices di sicurezza.

Cyber Advisory LLC | www.exploitfinder.com Page 58

Strictly Confidential - Cyber Advisory LLC Exploit Finder

 35. Security Headers Analysis - Grade F MEDIUM

Description: ? HTTP Strict Transport Security (HSTS): Helps protect websites against protocol downgrade attacks

and cookie hijacking

? Content Security Policy (CSP): Helps prevent Cross-Site Scripting (XSS) and data injection attacks

? X-Frame-Options: Protects against clickjacking attacks by preventing your site from being embedded

in iframes

? X-Content-Type-Options: Prevents browsers from MIME-sniffing a response from the declared

content-type

? Referrer Policy: Controls how much referrer information is included with requests

? Permissions Policy: Controls which browser features and APIs can be used in the browser

Validation: Missing 6 security headers. Grade: F (Fail). Evidence gathered through controlled testing workflow.

Risk Score: 5.5

CVSS: Risk score inferred from severity: Medium (5.5)

Location: http://testphp.vulnweb.com/

Proof of Concept / Evidence:

Detected during Passive Audit

Recommendation:

Strict-Transport-Security: max-age=31536000; includeSubDomains
Content-Security-Policy: default-src 'self'
X-Frame-Options: SAMEORIGIN
X-Content-Type-Options: nosniff
Referrer-Policy: no-referrer-when-downgrade
Permissions-Policy: camera=(), microphone=(), geolocation=()

 36. Security Headers Analysis - Grade F MEDIUM

Description: ? HTTP Strict Transport Security (HSTS): Helps protect websites against protocol downgrade attacks

and cookie hijacking

? Content Security Policy (CSP): Helps prevent Cross-Site Scripting (XSS) and data injection attacks

? X-Frame-Options: Protects against clickjacking attacks by preventing your site from being embedded

in iframes

? X-Content-Type-Options: Prevents browsers from MIME-sniffing a response from the declared

content-type

? Referrer Policy: Controls how much referrer information is included with requests

? Permissions Policy: Controls which browser features and APIs can be used in the browser

Validation: Missing 6 security headers. Grade: F (Fail). Evidence gathered through controlled testing workflow.

Risk Score: 5.5

CVSS: Risk score inferred from severity: Medium (5.5)

Cyber Advisory LLC | www.exploitfinder.com Page 59

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Location: http://testphp.vulnweb.com/

Proof of Concept / Evidence:

Detected during Passive Audit

Recommendation:

Strict-Transport-Security: max-age=31536000; includeSubDomains
Content-Security-Policy: default-src 'self'
X-Frame-Options: SAMEORIGIN
X-Content-Type-Options: nosniff
Referrer-Policy: no-referrer-when-downgrade
Permissions-Policy: camera=(), microphone=(), geolocation=()

 37. GDPR Cookie Consent Missing MEDIUM

Description: No valid cookie consent banner was detected on the assessed target. Checks performed: Cookie Policy

link, script vendors (30+ markers), consent DOM elements, and accept/reject controls.

Validation: Nessun Cookie Banner, CMP (Consent Management Platform) o meccanismo di consenso rilevato.

Evidence gathered through controlled testing workflow.

Risk Score: 5.5

CVSS: Risk score inferred from severity: Medium (5.5)

Location: http://testphp.vulnweb.com/

Proof of Concept / Evidence:

Detected during Passive Audit Checks performed: Cookie Policy link, script vendors (30+ markers), consent DOM

elements, and accept/reject controls.

Recommendation:

1. Implement a certified CMP (e.g., Cookiebot, OneTrust, iubenda).
2. Block all tracking scripts before consent is granted.
3. Provide granular consent controls by cookie category.
4. Store auditable proof of consent, including timestamp and preference state.

 38. GDPR Cookie Consent Missing MEDIUM

Description: No valid cookie consent banner was detected on the assessed target. Checks performed: Cookie Policy

link, script vendors (30+ markers), consent DOM elements, and accept/reject controls.

Validation: Nessun Cookie Banner, CMP (Consent Management Platform) o meccanismo di consenso rilevato.

Evidence gathered through controlled testing workflow.

Risk Score: 5.5

CVSS: Risk score inferred from severity: Medium (5.5)

Location: http://testphp.vulnweb.com/

Proof of Concept / Evidence:

Cyber Advisory LLC | www.exploitfinder.com Page 60

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Detected during Passive Audit Checks performed: Cookie Policy link, script vendors (30+ markers), consent DOM

elements, and accept/reject controls.

Recommendation:

1. Implement a certified CMP (e.g., Cookiebot, OneTrust, iubenda).
2. Block all tracking scripts before consent is granted.
3. Provide granular consent controls by cookie category.
4. Store auditable proof of consent, including timestamp and preference state.

 39. [GDPR Art. 37-39] Contatto Privacy/DPO Assente MEDIUM

Description: Non è stato rilevato un contatto esplicito per la privacy (DPO, privacy@, ecc.)

Validation: Nessun indirizzo email privacy@, dpo@ o link a modulo contatto privacy trovato. Evidence gathered

through controlled testing workflow.

Risk Score: 5.5

CVSS: Risk score inferred from severity: Medium (5.5)

Location: http://testphp.vulnweb.com/

Proof of Concept / Evidence:

Detected during Passive Audit

Recommendation:

1. Create a dedicated privacy contact email (e.g., privacy@domain.com, dpo@domain.com)
2. Publish the contact details in the Privacy Notice
3. If a DPO is mandatory, appoint and register the DPO with the competent supervisory authority

 40. [GDPR Art. 37-39] Contatto Privacy/DPO Assente MEDIUM

Description: Non è stato rilevato un contatto esplicito per la privacy (DPO, privacy@, ecc.)

Validation: Nessun indirizzo email privacy@, dpo@ o link a modulo contatto privacy trovato. Evidence gathered

through controlled testing workflow.

Risk Score: 5.5

CVSS: Risk score inferred from severity: Medium (5.5)

Location: http://testphp.vulnweb.com/

Proof of Concept / Evidence:

Detected during Passive Audit

Recommendation:

1. Create a dedicated privacy contact email (e.g., privacy@domain.com, dpo@domain.com)
2. Publish the contact details in the Privacy Notice
3. If a DPO is mandatory, appoint and register the DPO with the competent supervisory authority

Cyber Advisory LLC | www.exploitfinder.com Page 61

Strictly Confidential - Cyber Advisory LLC Exploit Finder

 41. Suspicious Reflected Parameter LOW

Description: Suspicious reflection on 'searchFor <d3V%09onMoUSeovEr+=+a=prompt,a()>v3dm'. XSS payload did

not execute in replay.

Validation: Observed. Evidence gathered through controlled testing workflow.

Risk Score: 3.1

CVSS: Risk score inferred from severity: Low (3.1)

Location: http://testphp.vulnweb.com/product.php?pic

Proof of Concept / Evidence:

Vulnerable Parameter: searchFor <d3V%09onMoUSeovEr+=+a=prompt,a()>v3dm0s

Payload (Auto-Generated PoC): "><script>alert(1)</script>

[!] VERIFICATION: Payload sent but NOT reflected as-is. Potential false positive or sanitized.

Recommendation:

Implement proper input validation and output encoding. Use Content-Security-Policy headers.

 42. Suspicious Reflected Parameter LOW

Description: Suspicious reflection on 'searchFor <d3V%09onMoUSeovEr+=+a=prompt,a()>v3dm'. XSS payload did

not execute in replay.

Validation: Observed. Evidence gathered through controlled testing workflow.

Risk Score: 3.1

CVSS: Risk score inferred from severity: Low (3.1)

Location: http://testphp.vulnweb.com/product.php?pic

Proof of Concept / Evidence:

Vulnerable Parameter: searchFor <d3V%09onMoUSeovEr+=+a=prompt,a()>v3dm0s

Payload (Auto-Generated PoC): "><script>alert(1)</script>

[!] VERIFICATION: Payload sent but NOT reflected as-is. Potential false positive or sanitized.

Recommendation:

Implement proper input validation and output encoding. Use Content-Security-Policy headers.

Cyber Advisory LLC | www.exploitfinder.com Page 62

Strictly Confidential - Cyber Advisory LLC Exploit Finder

 43. Suspicious Reflected Parameter LOW

Description: Suspicious reflection on 'searchFor <D3V%09onmOUSeOveR%0a=%0a(prompt)``>v3'. XSS payload

did not execute in replay.

Validation: Observed. Evidence gathered through controlled testing workflow.

Risk Score: 3.1

CVSS: Risk score inferred from severity: Low (3.1)

Location: http://testphp.vulnweb.com/hpp/?pp

Proof of Concept / Evidence:

Vulnerable Parameter: searchFor <D3V%09onmOUSeOveR%0a=%0a(prompt)``>v3dm0s

Payload (Auto-Generated PoC): "><script>alert(1)</script>

[!] VERIFICATION: Payload sent but NOT reflected as-is. Potential false positive or sanitized.

Recommendation:

Implement proper input validation and output encoding. Use Content-Security-Policy headers.

 44. Suspicious Reflected Parameter LOW

Description: Suspicious reflection on 'searchFor <D3V%09onmOUSeOveR%0a=%0a(prompt)``>v3'. XSS payload

did not execute in replay.

Validation: Observed. Evidence gathered through controlled testing workflow.

Risk Score: 3.1

CVSS: Risk score inferred from severity: Low (3.1)

Location: http://testphp.vulnweb.com/hpp/?pp

Proof of Concept / Evidence:

Vulnerable Parameter: searchFor <D3V%09onmOUSeOveR%0a=%0a(prompt)``>v3dm0s

Payload (Auto-Generated PoC): "><script>alert(1)</script>

[!] VERIFICATION: Payload sent but NOT reflected as-is. Potential false positive or sanitized.

Recommendation:

Implement proper input validation and output encoding. Use Content-Security-Policy headers.

Cyber Advisory LLC | www.exploitfinder.com Page 63

Strictly Confidential - Cyber Advisory LLC Exploit Finder

 45. Suspicious Reflected Parameter LOW

Description: Suspicious reflection on 'searchFor <htmL%0aoNpOiNtEreNTER+=+confirm()//'. XSS payload did not

execute in replay.

Validation: Observed. Evidence gathered through controlled testing workflow.

Risk Score: 3.1

CVSS: Risk score inferred from severity: Low (3.1)

Location: http://testphp.vulnweb.com/artists.php?artist

Proof of Concept / Evidence:

Vulnerable Parameter: searchFor <htmL%0aoNpOiNtEreNTER+=+confirm()//

Payload (Auto-Generated PoC): "><script>alert(1)</script>

[!] VERIFICATION: Payload sent but NOT reflected as-is. Potential false positive or sanitized.

Recommendation:

Implement proper input validation and output encoding. Use Content-Security-Policy headers.

 46. Suspicious Reflected Parameter LOW

Description: Suspicious reflection on 'searchFor <htmL%0aoNpOiNtEreNTER+=+confirm()//'. XSS payload did not

execute in replay.

Validation: Observed. Evidence gathered through controlled testing workflow.

Risk Score: 3.1

CVSS: Risk score inferred from severity: Low (3.1)

Location: http://testphp.vulnweb.com/artists.php?artist

Proof of Concept / Evidence:

Vulnerable Parameter: searchFor <htmL%0aoNpOiNtEreNTER+=+confirm()//

Payload (Auto-Generated PoC): "><script>alert(1)</script>

[!] VERIFICATION: Payload sent but NOT reflected as-is. Potential false positive or sanitized.

Recommendation:

Implement proper input validation and output encoding. Use Content-Security-Policy headers.

Cyber Advisory LLC | www.exploitfinder.com Page 64

Strictly Confidential - Cyber Advisory LLC Exploit Finder

 47. Suspicious Reflected Parameter LOW

Description: Suspicious reflection on 'searchFor <A/+/ONPointeRenter%09=%09confirm()>v3'. XSS payload did not

execute in replay.

Validation: Observed. Evidence gathered through controlled testing workflow.

Risk Score: 3.1

CVSS: Risk score inferred from severity: Low (3.1)

Location: http://testphp.vulnweb.com/listproducts.php?cat

Proof of Concept / Evidence:

Vulnerable Parameter: searchFor <A/+/ONPointeRenter%09=%09confirm()>v3dm0s

Payload (Auto-Generated PoC): "><script>alert(1)</script>

[!] VERIFICATION: Payload sent but NOT reflected as-is. Potential false positive or sanitized.

Recommendation:

Implement proper input validation and output encoding. Use Content-Security-Policy headers.

 48. Suspicious Reflected Parameter LOW

Description: Suspicious reflection on 'searchFor <A/+/ONPointeRenter%09=%09confirm()>v3'. XSS payload did not

execute in replay.

Validation: Observed. Evidence gathered through controlled testing workflow.

Risk Score: 3.1

CVSS: Risk score inferred from severity: Low (3.1)

Location: http://testphp.vulnweb.com/listproducts.php?cat

Proof of Concept / Evidence:

Vulnerable Parameter: searchFor <A/+/ONPointeRenter%09=%09confirm()>v3dm0s

Payload (Auto-Generated PoC): "><script>alert(1)</script>

[!] VERIFICATION: Payload sent but NOT reflected as-is. Potential false positive or sanitized.

Recommendation:

Implement proper input validation and output encoding. Use Content-Security-Policy headers.

Cyber Advisory LLC | www.exploitfinder.com Page 65

Strictly Confidential - Cyber Advisory LLC Exploit Finder

 49. Suspicious Reflected Parameter LOW

Description: Suspicious reflection on 'searchFor <D3V%09onpOiNtEREnter%0d=%0d(confirm)('. XSS payload did

not execute in replay.

Validation: Observed. Evidence gathered through controlled testing workflow.

Risk Score: 3.1

CVSS: Risk score inferred from severity: Low (3.1)

Location: http://testphp.vulnweb.com/search.php?test

Proof of Concept / Evidence:

Vulnerable Parameter: searchFor <D3V%09onpOiNtEREnter%0d=%0d(confirm)()>v3dm0s

Payload (Auto-Generated PoC): "><script>alert(1)</script>

[!] VERIFICATION: Payload sent but NOT reflected as-is. Potential false positive or sanitized.

Recommendation:

Implement proper input validation and output encoding. Use Content-Security-Policy headers.

 50. Suspicious Reflected Parameter LOW

Description: Suspicious reflection on 'searchFor <D3V%09onpOiNtEREnter%0d=%0d(confirm)('. XSS payload did

not execute in replay.

Validation: Observed. Evidence gathered through controlled testing workflow.

Risk Score: 3.1

CVSS: Risk score inferred from severity: Low (3.1)

Location: http://testphp.vulnweb.com/search.php?test

Proof of Concept / Evidence:

Vulnerable Parameter: searchFor <D3V%09onpOiNtEREnter%0d=%0d(confirm)()>v3dm0s

Payload (Auto-Generated PoC): "><script>alert(1)</script>

[!] VERIFICATION: Payload sent but NOT reflected as-is. Potential false positive or sanitized.

Recommendation:

Implement proper input validation and output encoding. Use Content-Security-Policy headers.

Cyber Advisory LLC | www.exploitfinder.com Page 66

Strictly Confidential - Cyber Advisory LLC Exploit Finder

 51. [OpenDB Match] Nginx Misconfiguration: Server: nginx/1.19.0 LOW

Description: Status: Rilevamento confermato (Offline DB)

Descrizione: Verificare settings per buffer overflow e header exposure.

CVE: N/A

Fonte: OpenDB Exploit Database (Cached)

Validation: Observed. Evidence gathered through controlled testing workflow.

Risk Score: 3.1

CVSS: Risk score inferred from severity: Low (3.1)

Location: http://testphp.vulnweb.com/

Proof of Concept / Evidence:

Detected during Passive Audit

Recommendation:

Verificare la configurazione secondo le best practices di sicurezza.

 52. Header Sicurezza Mancanti LOW

Description: Strict-Transport-Security

Content-Security-Policy

X-Frame-Options

Validation: Observed. Evidence gathered through controlled testing workflow.

Risk Score: 3.1

CVSS: Risk score inferred from severity: Low (3.1)

Location: http://testphp.vulnweb.com/

Proof of Concept / Evidence:

Detected during Passive Audit

Recommendation:

Verificare la configurazione secondo le best practices di sicurezza.

Cyber Advisory LLC | www.exploitfinder.com Page 67

Strictly Confidential - Cyber Advisory LLC Exploit Finder

 53. [OpenDB Match] Nginx Misconfiguration: Server: nginx/1.19.0 LOW

Description: Status: Rilevamento confermato (Offline DB)

Descrizione: Verificare settings per buffer overflow e header exposure.

CVE: N/A

Fonte: OpenDB Exploit Database (Cached)

Validation: Observed. Evidence gathered through controlled testing workflow.

Risk Score: 3.1

CVSS: Risk score inferred from severity: Low (3.1)

Location: http://testphp.vulnweb.com/

Proof of Concept / Evidence:

Detected during Passive Audit

Recommendation:

Verificare la configurazione secondo le best practices di sicurezza.

 54. Header Sicurezza Mancanti LOW

Description: Strict-Transport-Security

Content-Security-Policy

X-Frame-Options

Validation: Observed. Evidence gathered through controlled testing workflow.

Risk Score: 3.1

CVSS: Risk score inferred from severity: Low (3.1)

Location: http://testphp.vulnweb.com/

Proof of Concept / Evidence:

Detected during Passive Audit

Recommendation:

Verificare la configurazione secondo le best practices di sicurezza.

Cyber Advisory LLC | www.exploitfinder.com Page 68

Strictly Confidential - Cyber Advisory LLC Exploit Finder

 55. Record SPF Mancante LOW

Description: Rischio SPAM/Spoofing

Validation: Observed. Evidence gathered through controlled testing workflow.

Risk Score: 3.1

CVSS: Risk score inferred from severity: Low (3.1)

Location: http://testphp.vulnweb.com/

Proof of Concept / Evidence:

Detected during Passive Audit

Recommendation:

Verificare la configurazione secondo le best practices di sicurezza.

 56. Record SPF Mancante LOW

Description: Rischio SPAM/Spoofing

Validation: Observed. Evidence gathered through controlled testing workflow.

Risk Score: 3.1

CVSS: Risk score inferred from severity: Low (3.1)

Location: http://testphp.vulnweb.com/

Proof of Concept / Evidence:

Detected during Passive Audit

Recommendation:

Verificare la configurazione secondo le best practices di sicurezza.

 57. Record DMARC Mancante LOW

Description: Rischio BEC limitato

Validation: Observed. Evidence gathered through controlled testing workflow.

Risk Score: 3.1

CVSS: Risk score inferred from severity: Low (3.1)

Location: http://testphp.vulnweb.com/

Proof of Concept / Evidence:

Detected during Passive Audit

Recommendation:

Verificare la configurazione secondo le best practices di sicurezza.

Cyber Advisory LLC | www.exploitfinder.com Page 69

Strictly Confidential - Cyber Advisory LLC Exploit Finder

 58. Record DMARC Mancante LOW

Description: Rischio BEC limitato

Validation: Observed. Evidence gathered through controlled testing workflow.

Risk Score: 3.1

CVSS: Risk score inferred from severity: Low (3.1)

Location: http://testphp.vulnweb.com/

Proof of Concept / Evidence:

Detected during Passive Audit

Recommendation:

Verificare la configurazione secondo le best practices di sicurezza.

 59. Content Security Policy (CSP) Header Not Set INFO

Description: Content Security Policy (CSP) is an added layer of security that helps to detect and mitigate certain

types of attacks, including Cross Site Scripting (XSS) and data injection attacks. These attacks are used

for everything from data theft to site defacement or distribution of malware. CSP provides a set of

standard HTTP headers that allow website owners to declare approved sources of content that browsers

should be allowed to load on that page ? covered types are JavaScript, CSS, HTML frames, fonts,

images and embeddable objects such as Java applets, ActiveX, audio and video files.

Validation: High. Evidence gathered through controlled testing workflow.

Risk Score: 0.0

CVSS: Risk score inferred from severity: Info (0.0)

Location: http://testphp.vulnweb.com/sitemap.xml

Proof of Concept / Evidence:

Detected during controlled assessment and verification workflow.

Recommendation:

Ensure that your web server, application server, load balancer, etc. is configured to set the Content-Security-Policy
header.

Cyber Advisory LLC | www.exploitfinder.com Page 70

Strictly Confidential - Cyber Advisory LLC Exploit Finder

 60. Missing Anti-clickjacking Header INFO

Description: The response does not protect against 'ClickJacking' attacks. It should include either

Content-Security-Policy with 'frame-ancestors' directive or X-Frame-Options.

Validation: Medium. Evidence gathered through controlled testing workflow.

Risk Score: 0.0

CVSS: Risk score inferred from severity: Info (0.0)

Location: http://testphp.vulnweb.com/

Proof of Concept / Evidence:

Detected during controlled assessment and verification workflow.

Recommendation:

Modern Web browsers support the Content-Security-Policy and X-Frame-Options HTTP headers. Ensure one of them is
set on all web pages returned by your site/app.
If you expect the page to be framed only by pages on your server (e.g. it's part of a FRAMESET) then you'll want to use
SAMEORIGIN, otherwise if you never expect the page to be framed, you should use DENY. Alternatively consider
implementing Content Security Policy's "frame-ancestors" directive.

 61. Content Security Policy (CSP) Header Not Set INFO

Description: Content Security Policy (CSP) is an added layer of security that helps to detect and mitigate certain

types of attacks, including Cross Site Scripting (XSS) and data injection attacks. These attacks are used

for everything from data theft to site defacement or distribution of malware. CSP provides a set of

standard HTTP headers that allow website owners to declare approved sources of content that browsers

should be allowed to load on that page ? covered types are JavaScript, CSS, HTML frames, fonts,

images and embeddable objects such as Java applets, ActiveX, audio and video files.

Validation: High. Evidence gathered through controlled testing workflow.

Risk Score: 0.0

CVSS: Risk score inferred from severity: Info (0.0)

Location: http://testphp.vulnweb.com/sitemap.xml

Proof of Concept / Evidence:

Detected during controlled assessment and verification workflow.

Recommendation:

Ensure that your web server, application server, load balancer, etc. is configured to set the Content-Security-Policy
header.

Cyber Advisory LLC | www.exploitfinder.com Page 71

Strictly Confidential - Cyber Advisory LLC Exploit Finder

 62. Missing Anti-clickjacking Header INFO

Description: The response does not protect against 'ClickJacking' attacks. It should include either

Content-Security-Policy with 'frame-ancestors' directive or X-Frame-Options.

Validation: Medium. Evidence gathered through controlled testing workflow.

Risk Score: 0.0

CVSS: Risk score inferred from severity: Info (0.0)

Location: http://testphp.vulnweb.com/

Proof of Concept / Evidence:

Detected during controlled assessment and verification workflow.

Recommendation:

Modern Web browsers support the Content-Security-Policy and X-Frame-Options HTTP headers. Ensure one of them is
set on all web pages returned by your site/app.
If you expect the page to be framed only by pages on your server (e.g. it's part of a FRAMESET) then you'll want to use
SAMEORIGIN, otherwise if you never expect the page to be framed, you should use DENY. Alternatively consider
implementing Content Security Policy's "frame-ancestors" directive.

 63. Absence of Anti-CSRF Tokens INFO

Description: No Anti-CSRF tokens were found in a HTML submission form.

A cross-site request forgery is an attack that involves forcing a victim to send an HTTP request to a

target destination without their knowledge or intent in order to perform an action as the victim. The

underlying cause is application functionality using predictable URL/form actions in a repeatable way.

The nature of the attack is that CSRF exploits the trust that a web site has for a user. By contrast,

cross-site scripting (XSS) exploits the trust that a user has for a web site. Like XSS, CSRF attacks are

not necessarily cross-site, but they can be. Cross-site request forgery is also known as CSRF, XSRF,

one-click attack, session riding, confused deputy, and sea surf.

CSRF attacks are effective in a number of situations, including:

* The victim has an active session on the target site.

* The victim is authenticated via HTTP auth on the target site.

* The victim is on the same local network as the target site.

CSRF has primarily been used to perform an action against a target site using the victim's privileges, but

recent techniques have been discovered to disclose information by gaining access to the response. The

risk of information disclosure is dramatically increased when the target site is vulnerable to XSS,

because XSS can be used as a platform for CSRF, allowing the attack to operate within the bounds of

the same-origin policy.

Validation: Low. Evidence gathered through controlled testing workflow.

Cyber Advisory LLC | www.exploitfinder.com Page 72

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Risk Score: 0.0

CVSS: Risk score inferred from severity: Info (0.0)

Location: http://testphp.vulnweb.com/

Proof of Concept / Evidence:

<form action="search.php?test=query" method="post">

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
For example, use anti-CSRF packages such as the OWASP CSRFGuard.

Phase: Implementation
Ensure that your application is free of cross-site scripting issues, because most CSRF defenses can be bypassed using
attacker-controlled script.

Phase: Architecture and Design
Generate a unique nonce for each form, place the nonce into the form, and verify the nonce upon receipt of the form. Be
sure that the nonce is not predictable (CWE-330).
Note that this can be bypassed using XSS.

Identify especially dangerous operations. When the user performs a dangerous operation, send a separate confirmation
request to ensure that the user intended to perform that operation.
Note that this can be bypassed using XSS.

Use the ESAPI Session Management control.
This control includes a component for CSRF.

Do not use the GET method for any request that triggers a state change.

Phase: Implementation
Check the HTTP Referer header to see if the request originated from an expected page. This could break legitimate
functionality, because users or proxies may have disabled sending the Referer for privacy reasons.

 64. Absence of Anti-CSRF Tokens INFO

Description: No Anti-CSRF tokens were found in a HTML submission form.

A cross-site request forgery is an attack that involves forcing a victim to send an HTTP request to a

target destination without their knowledge or intent in order to perform an action as the victim. The

underlying cause is application functionality using predictable URL/form actions in a repeatable way.

The nature of the attack is that CSRF exploits the trust that a web site has for a user. By contrast,

cross-site scripting (XSS) exploits the trust that a user has for a web site. Like XSS, CSRF attacks are

not necessarily cross-site, but they can be. Cross-site request forgery is also known as CSRF, XSRF,

one-click attack, session riding, confused deputy, and sea surf.

Cyber Advisory LLC | www.exploitfinder.com Page 73

Strictly Confidential - Cyber Advisory LLC Exploit Finder

CSRF attacks are effective in a number of situations, including:

* The victim has an active session on the target site.

* The victim is authenticated via HTTP auth on the target site.

* The victim is on the same local network as the target site.

CSRF has primarily been used to perform an action against a target site using the victim's privileges, but

recent techniques have been discovered to disclose information by gaining access to the response. The

risk of information disclosure is dramatically increased when the target site is vulnerable to XSS,

because XSS can be used as a platform for CSRF, allowing the attack to operate within the bounds of

the same-origin policy.

Validation: Low. Evidence gathered through controlled testing workflow.

Risk Score: 0.0

CVSS: Risk score inferred from severity: Info (0.0)

Location: http://testphp.vulnweb.com/

Proof of Concept / Evidence:

<form action="search.php?test=query" method="post">

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
For example, use anti-CSRF packages such as the OWASP CSRFGuard.

Phase: Implementation
Ensure that your application is free of cross-site scripting issues, because most CSRF defenses can be bypassed using
attacker-controlled script.

Phase: Architecture and Design
Generate a unique nonce for each form, place the nonce into the form, and verify the nonce upon receipt of the form. Be
sure that the nonce is not predictable (CWE-330).
Note that this can be bypassed using XSS.

Identify especially dangerous operations. When the user performs a dangerous operation, send a separate confirmation
request to ensure that the user intended to perform that operation.
Note that this can be bypassed using XSS.

Use the ESAPI Session Management control.
This control includes a component for CSRF.

Do not use the GET method for any request that triggers a state change.

Phase: Implementation
Check the HTTP Referer header to see if the request originated from an expected page. This could break legitimate
functionality, because users or proxies may have disabled sending the Referer for privacy reasons.

Cyber Advisory LLC | www.exploitfinder.com Page 74

